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Resumo

A Termodinamica trata de sistemas macroscépicos e foi formulada com base em fenoménos em-
piricos. A teoria cldssica € baseada em trés leis fisicas: a Lei Zero estabele as condi¢des para estados
de equilibrio térmico entre sistemas, a Primeira Lei estabelece a conservacio de energia e a Segunda
Lei estabelece os processos permitidos ao levar estados de equilibrio a estados de equilibrio. O fato
de nunca observarmos violacdes da Segunda Lei na escala macroscopica se deve ao grande nimero
de particulas que compdem tais sistemas, da ordem de 10?3, porém, ao aplicarmos as leis da Ter-
modindmica em sistemas microscopicos, flutuacdes passam a exercer um papel importante e faz-se
necessdrio inclui-las na teoria. Assim, grande esfor¢o tem sido feito para o desenvolvimento de uma
base tedrica para sistemas microscopicos fora do equilibrio, levando ao surgimento de Teoremas de
Flutuagdo, destaque para a igualdade de Jarzynsky, introduzida em 1997, que € o resultado princi-
pal desta monografia. Tais teoremas tem como caracteristica principal a substitui¢do das conhecidas
desigualdades termodinamicas por igualdades. Deduziremos a igualdade de Jarzysnki neste trabalho
considerando um sistema hamiltoniano composto de particulas cldssicas em contato com um reserva-
tério térmico, sobre o qual é realizado trabalho através de um parametro externo durante um intervalo
de tempo finito. Dessa maneira obtemos uma relagao de igualdade entre a variacao da energia livre
do sistema e o trabalho realizado sobre o mesmo. Este resultado tem aplicacao direta no estudo de
sistemas microscopicos pois permite que uma grandeza definida em condicdes de equilibrio (funcdo
de estado) seja obtida através de processos fora do equilibrio (irreversiveis). Também serd discutido
a conexao deste resultado com a Segunda Lei da Termodinadmica, a dire¢do da seta do tempo e a

reversibilidade microscépica.



1 Introducao

Sistemas macroscOpicos, nos quais podemos aplicar o limite termodindmico, comportam-se da
maneira prevista pela teoria Termodinamica; porém, com o avango da nanotecnologia faz-se neces-
sario repensar tais leis quando aplicadas a sistemas com um niimero pequeno de particulas - nestes,
flutuacdes estatisticas ndo podem ser ignoradas. Nas ultimas décadas, vimos o surgimento de vérias
relacdes de flutuagdo na literatura devido a necessidade do desenvolvimento de uma teoria da Meca-
nica Estatistica que incorpore processos que ocorram fora do equilibrio, principalmente através de um
modelo da dindmica microscopica de processos irreversiveis. Assim, as relagdes de flutuacdo visam
quantificar a probabilidade de observar-se tais desvios [1].

Essas relagdes revolucionaram nosso conhecimento e uso da Termodindmica pois dispensam a
necessidade do limite termodindmico permitindo que os conceitos da teoria possam ser aplicados em
sistemas microscépicos, além disso, também sao validos em sistemas levados para fora do equilibrio.
Uma caracteristica que essas relagdes apresentam em comum € que, ao incorporar flutuacdes na dina-
mica do sistema, ou seja, fazendo-se um tratamento estocastico de observaveis fora do equilibrio, as
desigualdades conhecidas da Termodinadmica passam a ser reescritas como igualdades. Neste texto,
iremos deduzir e discutir uma relacdo de flutuacdo em particular, que foi introduzida em 1997 por

Christopher Jarzysnki [2]
(e7PWV) = e PAF (D

onde 3 = kBLT, sendo kp a constante de Boltzmann e F' € a energia livre de Helmholtz, que serd
definida mais adiante. A Eq. (1) ficou conhecida como igualdade de Jarzynski. Outro resultado que
seréd discutido aqui € o teorema de flutuagdo de Crooks (TFC), que apesar de ter sido desenvolvido
alguns anos depois da Eq.(1), permite que a igualdade acima seja deduzida a partir de um protocolo
ainda mais geral, sob a suposi¢do de que a dindmica do sistema satisfaca a condicao de reversibilidade
microscépica. E a partir deste que deduziremos a igualdade de Jarzynski no presente texto. O TFC
afirma que as distribui¢des de probabilidade pp (V) e pr(V) satisfazem

po(+W) SV -AF) @)

pr(=W) 7
onde pp € a distribuicao dos valores de trabalho obtidos para realizagdes de um mesmo protocolo de
trabalho externo aplicado sobre o sistema e pg € a distribui¢do relativa ao protocolo “reverso”.
Antes de definirmos o modelo do sistema utilizado para a deducdo das relacdes acima, assim

como o protocolo de trabalho aplicado, iremos rever os principais conceitos da Termodinamica e da

Mecanica Estatistica que serdo necessarios para a discussdo dos resultados apresentados.



1.1 Termodinamica e estados de equilibrio

A Termodinamica é uma teoria que descreve o estado de equilibrio térmico de sistemas fisicos
através de quantidades mensurdveis como temperatura, volume, pressio, etc. Apesar de sua gene-
ralidade, essa teoria nao faz referéncia a forcas especificas aplicadas sobre o sistema e nem sobre a
resposta mecanica do mesmo, mas sim caracteriza seu estado de equilibrio na forma de desigualda-
des entre as varidveis de estado que o descrevem [3]. Sabemos que as leis que implementam tais
desigualdades foram formuladas a partir de uma abordagem fenomenoldgica, com a observacdo de
fendmenos na escala macroscépica, sendo assim sua formulacdo dispensa o conhecimento dos com-
ponentes microscopicos dos sistemas estudados e precede o desenvolvimento da teoria atdmica.

Estados de equilibrio sdo, entdo, um conceito fundamental em Termodinamica. De acordo com
Callen [3]: “The single, all encompassing problem of thermodynamics is the determination of the
equilibrium state that eventually results after the removal of internal constraints in a closed, compo-
site system”. Se trata, entdo, do estado interno de um sistema termodindmico, ou uma relacdo entre
sistemas distintos conectados por vinculos, como uma parede adiabdtica por exemplo. Tais estados
s@o estdticos e descritos pela especificagdo de poucas quantidades fisicas, conhecidas como coorde-
nadas termodindmicas.

Quando um sistema ¢é levado de um estado de equilibrio a outro através de um processo quase-
estdtico, a mudanca do sistema ocorre tdo lentamente que os estados intermedidrios se mantém em
equilibrio durante toda a transformacao; nesse caso conseguimos definir as varidveis intensivas ter-
modindmicas para cada instante durante o processo e assim conseguimos estabelecer relacOes de
igualdade entre as mesmas.

Consideremos agora um sistema em contato com um reservatorio térmico e seja a vizinhanga de-
finida como a parte do reservatdrio que interage diretamente com o sistema; o restante do reservatério
serd denominado “universo”. Podemos definir um processo reversivel como sendo aquele no qual,
apos o sistema atingir um novo estado de equilibrio final, seja possivel a realizacdo de um outro pro-
cesso cujo unico efeito seja restaurar as condi¢des iniciais de equilibrio do sistema + vizinhanca, ou
seja, ndo ocorre mudanga alguma no resto do universo. Um processo quase-estatico que ocorre sem

dissipacdo de energia € reversivel, todos os demais processos sdo irreversiveis [4].

1.2 Segunda Lei da Termodinamica

Vimos na sec¢do anterior que as coordenadas termodinamicas sdo definidas para estados de equi-

librio, porém todos os processos naturais ocorrem de maneira irreversivel. Nesse caso, apesar de nao



ser possivel definir as varidveis para cada etapa da transformacgdo, podemos estabelecer relagdes entre
as quantidades termodinamicas através de desigualdades. Aqui usaremos a desigualdade de Clausius
para formularmos a Segunda Lei da Termodindmica da maneira que melhor se aplica ao processo

fisico estudado no presente trabalho
AQ < TAS, 3)

onde AQ ¢é o calor absorvido pelo sistema, AS é a varia¢do da entropia durante o processo e 1" € a
temperatura do reservatdrio térmico em contato com o sistema de interesse [S]. A Eq. (3) se aplica
mesmo quando o sistema de interesse € tirado arbitrariamente do equilibrio ou quando € desacoplado
do reservatério durante a transformacao.

Se aplicarmos a Eq. (3) a um sistema isolado termicamente, obtemos
0<85r =8, 4)

Este resultado nos diz que a entropia de um sistema isolado nunca diminui, permanecendo constante
apenas no caso especial de processos reversiveis. Portanto, como consequéncia da Segunda Lei os
processos naturais sempre ocorrem no sentido de aumentar a entropia total do sistema, até que seja
atingido um novo estado de equilibrio para o qual a entropia € maxima [3].

Definiremos aqui a energia livre de Helmholtz que € valida para sistemas conectados a um reser-

vatorio térmico de temperatura 7' como sendo
F=U-TS§, ®)
para cada um dos estados de equilibrio de interesse. Para o caso especifico de um processo isotérmico
(AT = 0) temos
AF =AU —TAS. 6)
A Primeira Lei da Termodinamica para processos onde ndo ocorre transferéncia de matéria é
expressa como
AU =Q+W. (N
Juntando as Egs. 3, 6 e 7, obtemos
AF < W, (8)
o resultado acima € a formulacdo da Segunda Lei que serd usada ao longo desta monografia, assim
como € feito por Jarzynki no artigo de referéncia [1].

Consideremos agora um sistema em contato diatérmico com um reservatorio de temperatura 7'

que recebe o trabalho externo I/ por meio de um processo quase-estitico. Nesse caso temos que



AF = Wyep. ©)

Trata-se entdo de um processo onde todo o trabalho é convertido em energia livre. Com isso, podemos

definir o trabalho dissipado como sendo a diferencga entre o trabalho total e a energia livre do sistema
Wy=W —AF > 0. (10)

Se consideramos agora uma transformacdo ciclica sob a acdo de um agente externo, teremos

AF = 0eakEq. (8) nos da
W >0, (11)

ou seja, ndo € possivel extrair trabalho de um sistema em equilibrio térmico com o reservatorio por
uma transformacao ciclica, pelo contrério, o sistema dissipa trabalho na forma de calor para o reser-

vatorio.

1.3 Mecanica Estatistica

A Mecanica Estatistica cldssica, desenvolvida principalmente por Maxwell, Boltzmann e Gibbs,
tem como objetivo justificar as leis da Termodindmica a partir de primeiros principios que envolvem
o conhecimento sobre a dindmica dos constituintes microscépicos da matéria. Apesar de estarmos
considerando sistemas com muitos graus de liberdade, nosso conhecimento sobre o estado do sistema
estd limitado aos valores das poucas coordenadas termodinamicas que conseguimos de fato medir,
assim, o que a Mecanica Estatistica faz é relacionar o conhecimento que temos sobre as varidveis de
estado em processos termodinamicos com variacdes dos estados microscOpicos acessiveis ao sistema
[6].

Nessa formulacdo, um estado de equilibrio termodinamico do sistema passa a ser chamado de
macroestado e € associado a um ensemble no espago de microestados. Um microestado é uma especi-
ficagdo completa de todas as particulas individuais que compdem o sistema. Microestados diferentes
podem gerar um mesmo macroestado da mesma forma que, ao jogarmos dois dados de seis faces
temos seis maneiras —microestados— diferentes de conseguirmos uma soma igual a sete — o macro-
estado([7]; nesse exemplo, o ensemble € o espaco amostral contendo todas as combinacdes de faces
cuja soma seja igual a sete. Vemos entdo que para um dado macroestado termodinamico, existe uma
distribui¢do de probabilidade que define todos os microestados possiveis para tal configuragao [6].

E importante salientar que um dado macroestado ird varrer todos os microestados acessiveis a
ele com igual probabilidade, sendo esta condicdo de equiprobabilidade considerada como o postu-

lado fundamental da Mecénica Estatistica [3]. Consideremos agora um sistema contendo um vinculo,



como por exemplo um embdlo que impede que um gas se expanda para um volume maior. Ao ser
removido, o sistema tem acesso a microestados até entdo inacessiveis. Apds algum tempo, € estabe-
lecido um novo estado de equilibrio que possui um nimero maior de microestados acessiveis quando
comparado com o estado de equilibrio inicial. Se relembrarmos da Termodinamica que a entropia de
um sistema sempre aumenta até que se atinja o valor médximo permitido para um dado estado de equi-
librio, podemos identificar a entropia como sendo uma funcdo do nimero de microestados acessiveis

ao sistema. Assim temos a conhecida expressao
S=kplnQ, (12)

onde kg € a constante de Boltzmann e €) é o nimero de microestados acessiveis [3].

Ao consideramos um tratamento probabilistico para a Segunda Lei, no entanto, vemos que embora
em sua formulag@o original certos processos sdo impossiveis de acontecer, como aqueles onde AS <
0, na teoria cinética ela deve ser substituida por uma formulagdo que leve em conta os valores médios
das quantidades observadas, de acordo com a qual os processos considerados impossiveis em sua
versao original sdo considerados apenas como improvaveis. Assim, esperamos que em sistemas com
um ndmero pequeno de particulas, a Eq. (11) seja valida apenas em média, sendo entdo substituida
pela relagdo (W) > 0.

Vemos entdo que o fato de o trabalho macroscépico observado sempre satisfazer a Eq. (11) € uma
consequéncia da aplicacdo do limite termodindmico as distribuicdes de probabilidade determinadas
pela Mecanica Estatistica. De acordo com a lei dos grandes nimeros, onde aqui tratamos de sistemas
contendo N = 10?3 particulas, o desvio relativo das distribui¢des € da ordem de \/Lﬁ, ou seja, para
todos os efeitos esse limite tende a zero e podemos igualar o valor médio ao valor absoluto de energia
interna, volume, etc., mesmo a partir de um conhecimento apenas probabilistico do microestado, pois
ao realizarmos 0 mesmo processo intimeras vezes esses desvios ou flutuagdes em relacao a média sao
sempre insignificantes [6].

O reconhecimento das limita¢des sobre a validade da Segunda Lei da Termodinamica em sistemas
microscépicos ja havia sido notada por Maxwell em cerca de 1867 [8]. A principal consideragao feita
por ele foi a respeito da reversibilidade: assumindo que as leis da dindmica governam 0s processos
microscOpicos € estas por sua vez apresentam simetria temporal, a irreversibilidade observada na
termodinamica ndo pode ser vista como uma consequéncia das leis da dindmica.

Maxwell afirma que, do ponto de vista termodinamico, os processos que sdo considerados como
irreversiveis sao aqueles cuja inversdo temporal ndo € impossivel, mas apenas improvdvel. Segundo
ele, “pequenas‘ violagcdes da segunda lei ocorrem constantemente na escala microscodpica, e € ape-

nas violagcdes em larga escala que sdo improvaveis: “the second law of thermodynamics is continually



being violated, and that to a considerable extent, in any sufficiently small group of molecules belon-
ging to a real body. [...] we have reason for believing the truth of the second law to be of the nature
of a strong probability, which, though it falls short of certainty by less than any assignable quantity,
is not an absolute certainty* [9]. Mais adiante voltaremos a falar sobre reversibilidade microscépica

na discussao dos resultados apresentados neste trabalho.

2 Definicao microscopica de Trabalho e Energia Livre

A partir de agora sempre falaremos de um sistema fisico constituido de particulas cldssicas regidas
pela mecanica hamiltoniana, em contato com um reservatério térmico a temperatura 7. Seja A um
parametro controlado por um agente externo que serd chamado de pardmetro de trabalho, pois este
realiza trabalho sobre o sistema ao ser variado. Para ilustrar, podemos imaginar um eldstico em
equilibrio térmico com um reservatério que € esticado pela acdo de uma forga externa - nesse caso A
€ definido como sendo o comprimento do eldstico. Denotaremos um estado de equilibrio do sistema
por [\, 7.

Inicialmente, o sistema é preparado no estado de equilibrio [A, 7] no instante ¢t = 0; entre ¢t = 0
et = 7, A é variado do valor A a um outro valor B; em seguida, mantemos A fixo em B, de modo
que, num certo instante ¢ = 7%, o sistema se encontrard no novo estado de equilibrio [B,T]. Todo o
trabalho, portanto, € realizado no intervalo 0 < ¢ < 7 e estamos desconsiderando a etapa de relaxacao,
T < t < 7*. Podemos fazer isso pois, apesar de haver troca de energia entre o sistema e o reservatorio
no intervalo 7 < ¢t < 7%, a energia trocada durante esse periodo nao altera o resultado final desde
que AF seja definida como a diferenca de energia livre entre os estados de equilibrio [A, T e [B, T].
Também assumiremos que a interac@o entre o sistema e o reservatorio € fraca o suficiente para que
possa ser completamente desprezada no intervalo 0 < ¢ < 7, assim iremos considerar que o sistema
€ desacoplado do reservatdrio durante a aplicacdo do protocolo de trabalho, reestabelendo o contato
diatérmico em seguida.

Também ndo ha nenhuma especificagdo sobre como o protocolo € aplicado, podendo este ser
totalmente arbitrario de forma que o sistema alcance seu novo estado de equilibrio a partir de um
processo irreversivel. Nesse caso, a Eq. (9) ndo € valida, ou seja, o trabalho ndo pode ser determinado
apenas em funcdo dos estados inicial e final, mas vai depender também da trajetdria percorrida, do
parametro A assim como do microestado no qual o sistema se encontra inicialmente.

Dadas essas consideragdes, o sistema parte de um estado de equilibrio a outro mas permanece

longe do equilibrio durante a transformagao. Sabemos da desigualdade de Clausius, (8), que o traba-



lho realizado sobre o sistema obedece a relagdao
|74 2 A.FEf‘ﬁB,T—f’ﬁA’T7 (13)

onde I 7 é a energia livre de Helmholtz do estado [\, 7).

Como nada foi dito sobre a quantidade de particulas que compdem o sistema, podemos aplicar
esse processo a sistemas microscopicos, portanto iremos agora definir o trabalho e a energia livre
nesse contexto. Utilizando a descri¢do da Mecanica Estatistica, o sistema e o reservatorio podem ser
vistos como uma colec¢ao de graus de liberdade cldssicos onde o parametro de trabalho A € considerado
uma coordenada adicional descrevendo a posi¢do de uma varidvel mecénica. Denotaremos por x um
microestado do sistema de interesse, que também pode ser visto como um ponto no espaco de fase.
Por sua vez, y denota um microestado do reservatério. A hamiltoniana H do “universo"(sistema +

reservatorio + agente de trabalho) é dada por
H(x,y;A) = H(x; A) + Hr(y) + Hine (X, ), (14)

onde H ¢ a hamiltoniana do sistema de interesse, Hr a do reservatério e Hj, (X,y) a energia de
interagdo. Como aqui faremos a dedugdo considerando o sistema desacoplado do reservatorio durante
a aplicagdo de A, nos preocuparemos apenas com a hamiltoniana H = H (x; \).

Ao fazermos A variar de uma quantidade d )\, a mudanca na energia do sistema € dada por

OH(x;\) . OH(x;)\)

—— = Adt—————=
O\ oA

Podemos assim definir o trabalho microscopico sobre todo 0 processo como sendo
W = /dW / dt)\— (1); A1) . (16)

Definiremos agora uma distribuicao de probabilidade p >\7T(X) no espago de microestados {x} para

d\ = dW. (15)

os estados de equilibrio do sistema. Por tratar-se de um sistema acoplado a um reservatorio térmico

cabe usar a distribui¢do de Boltzmann

. 1
Pir(x) = Z—exp[-FH(x, )], a7

onde
Zur = [ dxexp -BH(x, ) (1)
€ a funcao de parti¢do candnica. A energia livre € entdo a definida por essa mesma formulagdo
Fyxr=—kgT'InZ) r. (19)
Agora consideremos um “ensemble” de realiza¢des do protocolo de trabalho, com as condi¢des

iniciais que descrevem o sistema e o reservatério dadas pela distribuicdo de probabilidade candnica.

Podemos calcular a média do trabalho W associado a cada realizacao do protocolo e assim espera-se



que a Eq. (13) seja substituida por uma mais fraca em termos do valor médio da distribuicao

(W) > AF, (20)

3 Os teoremas de Crooks e Jarzynski

3.1 Demonstracao

Agora faremos a demonstragdo do Teorema de Flutuacdo de Crooks (TFC) no contexto definido
na §2 [10]. O TFC prevé uma relacao de simetria entre as distribui¢des de probabilidade de trajetérias
conjugadas no espaco de fase. Isto é: dado o processo definido na §2, existe um outro, em que o
sistema parte do macroestado [B, T'| em t = 0 e sofre a agdo do protocolo \*(¢) inverso ao considerado
inicialmente

A (t) = M1 — 1), 21
sendo idéntico ao processo original em

todos os demais aspectos. Denotaremos P

esses dois processos como reverso (R) e /L\

direto (D). Se x € um ponto qualquer no XD(O)\/ Xp(7)

espaco de fase do sistema, definimos o

seu conjugado x* como o ponto obtido /7‘/\
| \/ XR(O)

preservando todas as coordenadas e in- Xp(7)

vertendo todos 0os momenta, isto &,

*

x=(q,p) — x" = (q,—Pp).

Figura 1: Par de trajetérias conjugadas.
Aqui iremos assumir que a hamiltoniana H é temporalmente invariante,
H(x"\) = H(x; \). (22)

Se vp = {xp(t);0 <t < 7} é uma possivel trajetéria do processo direto, definimos também a

sua trajetéria conjugada do processo reverso, vg = {xg(t);0 <t < 7}, tal que
xgr(t) = x5 (17 — ). (23)

Assim, a trajetéria vr € exatamente o que observariamos se vp fosse filmada e depois executada de
tras para a frente (com o crondmetro funcionando no sentido real).
Agora iremos considerar o microestado inicial como sendo uma varidvel aleatdria definida pelo

macroestado [A, T'] através da distribuicdo de Boltzmann (17). Realizando o processo (D) infinitas



vezes, obtemos um ensemble de trajetdrias, vistas como realizacdes de uma distribui¢do de probabili-
dade Pp[yp]. Como a dindmica é deterministica, a probabilidade de se observar uma dessas trajetorias

¢ a mesma probabilidade de se observar a respectiva condi¢do inicial, dada por

e 1
Po o] = Bl (x0(0)) = 77— exp (=AH (xp(0); 4)). 24
Analogamente, para o processo (R) temos
Pr VRl = P (xr(0) = 7, P (—BH (xr(0); B)). (25)

O trabalho Wp, [yp] na trajetéria vp é dado pela Eq. (16); equivalentemente, é igual a diferenca

entre os valores final e inicial de . Como a tinica dependéncia temporal explicita é em \, temos

@(X; A(t)) = %—Ij(x; At)) = %—Ij(X; AD)A),

dt
de onde o integrando na Eq. (16) é dH. Assim
Wp = Wb [yvp] = H(xp(7); B) — H(xp(0); A); (26)
analogamente,
Wr = Wr[yr] = H(xg(7); A) — H(xr(0); B). (27)

Combinando as Egs. (22), (23), (26) e (27) temos
Wp [vp] = =Wr ] (28)
Tomando a razdo entre as Eqgs. (24) e (25) temos

Polynl _ Zpr ‘ .
Prlvel ~ Zar ¥ 16 (H(2r(0); B) = H(zp(0); A))]. (29)

Agora, das Egs. (22) e (23) segue H(xzg(0); B) = H(xp(7); B). Usando a Eq. (26), vemos que

o argumento da exponencial acima é SWp. Assim,
Pplyp] _ Zpr AW
Prlvr]  Zar .
Finalmente, invertendo a Eq. (19) para escrever Z, r = exp (—(F) ), obtemos o resultado desejado,

Polvp] — SWp-AF) (30)

Pr[7R]
A partir dessa relac@o entre as probabilidades de trajetérias conjugadas vp e v, podemos obter

uma outra relacionando valores de trabalho. Para isso, integra-se sobre todas as yp tais que Wp[vyp| =
+WW, usando a relagdo de simetria dada na Eq. (28)
PpWpl= > Pplwl= Y, = Pl =

¥0IWh p1=Wp V0IWhp1=Wp

10



— f(Wp—AF) Z Prlyr] = PWp—AF) Z Pr[7z]
¥p|Wvp]=Wp YrIW[YRI=—WD

Pp[Wp| = PWo=2F) pol_ ). (31)

Assim, se pp(W) € a densidade de probabilidade correspondente ao valor de trabalho W no

processo (D) e pr(V') a grandeza correspondente em (R), encontramos
pp(+W) BW-AF)

pr(=W) 7
este € o Teorema de Flutuacdo de Crooks, originalmente derivado no contexto de uma dinamica

(32)

estocastica markoviana [11].

Rearranjando a Eq. (32)
pp(+W)e’TWHAE) — pp(—W) (33)

e integrando ambos os lados da equacdo de —oo até 400, lembrando que o lado direito € igual a um

devido a normalizacdo da distribui¢do de probabilidade temos

+o0
/ AW pp (4 W)eP W) = o=BAF

[e.9]
(WY = 9aF
onde (...) denota a média sobre as trajetérias do processo direto (D). Este é o resultado central desta

monografia, Eq. 1, deduzido originalmente por Jarzynski na Ref. [2].

3.2 Relacdo com a Segunda Lei da Termodinamica

Podemos usar a Eq. (1) para obter uma relagdo direta entre AF' e (W) utilizando a desigualdade
de Jensen que assegura que (exp X) > exp (X), sendo X uma varidvel aleatdria real qualquer [12].

Combinando essa inequagdo com a Eq. (1) temos
e PR = (e7FWY > e=AW) (34)
e portanto
(W) > AF. (35)

Assim, a Igualdade de Jarzynski implica a desigualdade que esperdvamos como “generalizacao” da
Segunda Lei para sistemas microscopicos, na qual substituimos W pelo seu valor médio.
Vamos agora investigar a probabilidade P(W < AF — ¢) de observarmos um valor de trabalho

que “viola a Segunda Lei” por uma margem maior que um certo € > 0,
AF—¢
P(W < AF —¢) = / dWp(W). (36)

—00
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E ficil ver que
AF—¢ AF—¢ +00
/ dWp(W) < / AW p(W)eP(AF—e=W)  pAF=e / dWp(W)e V.

o0 —00 —0o0

Assim, verificando que a dltima integral é exatamente <e*6W> e usando a Eq. 1, temos
P(W < AF —¢) < e™P, (37)

resultado que serd discutido mais adiante.

4 Discussao

A igualdade de Jarzynski (Eq. (1)) é notavel por conectar a diferenca de energia livre entre dois
estados de equilibrio com uma média de valores de trabalho obtidos em processos (possivelmente)
irreversiveis — isto €, ela permite obter informagao sobre o estado de equilibrio de um sistema a partir
de processos que ocorrem fora do equilibrio [2].

Como vimos, deste teorema segue a desigualdade dada na Eq. (35), que, para sistemas macrosco-
picos, recupera a expressio da Segunda Lei dada na Eq. (8). A primeira vista pode-se pensar que a
igualdade de Jarzynski é uma dedu¢do microscopica da Segunda Lei da Termodinimica, esclarecendo
assim a irreversibilidade microscépica. Entretanto esse ndo € o caso pois durante nossa deducao assim
como € feito no artigo original, a seta do tempo € introduzida “a mao”. Para justificar essa afirmacao
considere a quantidade de realizacdes necessarias para se observar a convergéncia da média de e~ #W
para o valor teoricamente correto, e ?2F. A média da exponencial é dominada por realizacdes raras
e converge mais rapidamente quando o processo reverso (lembrar das trajetérias conjugadas) possui
maior dissipacdo de trabalho. Assim, para testar a validade da Eq. (1) € necessario escolher um
microestado muito particular onde impomos a dire¢do da seta do tempo [10].

Agora nos vemos em posi¢do de retomar a discussao iniciada na subsecao §1.3 sobre a validade da
Segunda Lei. Temos dois resultados distintos para processos irreversiveis em contato com um tnico
reservatorio térmico: sabemos da termodinamica que W > AF, mas para sistemas microscopicos
as flutuacOes dominam a cena e ocasionalmente veremos violagdes da desigualdade de Clausius.
Se fosse verdade que W > AF para cada processo realizado, entio <e‘ﬁW> seria necessariamente
menor que e BAF Como vimos, porém, esse ndo € o caso: ao consideramos W como uma varidvel
estocdstica ocasionalmente teremos processos em que W < AF' — raros para sistemas macroscopicos
— e assim nao ha contradi¢do nenhuma entre esses resultados.

Temos da Eq. (37) que a probabilidade de observarmos uma trajetéria com trabalho menor que

AF — ¢ decai exponencialmente com ¢/kpT. Para sistemas macroscépicos, em que qualquer di-
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ferenca £ mensurdvel ¢ muito maior que kp7’, essa probabilidade torna-se essencialmente nula, em
pleno acordo com o que a experiéncia nos diz: nunca observamos violagdes da Segunda Lei.

A Eq. (30) também estd imediatamente conectada a Segunda Lei da Termodinamica, isto €, a
irreversibilidade macroscépica. Imagine que vejamos um filme que mostra o nosso sistema macros-
copico com o parametro de trabalho A sendo variado de A até B e queiramos saber se o que vemos €
de fato o filme do processo direto (D) ou o do processo reverso (R) reproduzido de trds para a frente.

Sejam, como antes, vp uma trajetdria possivel do processo (D) e v a sua trajetoria conjugada de
(R). Para descobrir qual a dire¢do da seta do tempo (direta ou invertida), precisamos saber qual traje-
téria é a mais provavel de acontecer. Portanto, queremos descobrir se € mais provavel que tenhamos
~vp quando o filme segue a direcdo direta da seta do tempo, ou vz quando o filme € invertido.

Vamos definir para cada processo o respectivo trabalho dissipado — a diferenca entre o trabalho
realizado e o trabalho necessdrio para que o sistema varie de [A, T'| para [ B, T'| de maneira reversivel,

Wi = — W5 = AF:
Wilvp] = Wplyp] — AF (38)

Wilve] = Wrlvr] + AF = =W [p) (39)

A Eq. (30), entdo, nos diz que Pp[vp]/Pr[Vr] = exp (BWS). Assim, se W3 > 0 € mais provével
que estejamos assistindo ao filme do processo direto e se W& < 0 (W& > 0) é mais provével que
estejamos vendo o filme ao contrério, e logo se trata do processo reverso. Portanto, para descobrir a
direcdo da seta do tempo nds assumimos que o trabalho dissipado € positivo, em total acordo com a

Segunda Lei [10].

Por sua vez, a Eq. (32) implica que
pp(+W) = pr(—=W) quando W = AF, pr(=W)

como ilustrado na Fig.(2), ou seja, o valor
de trabalho para o qual as duas distribui¢des
se cruzam nao depende do protocolo apli-
cado e € igual ao trabalho de uma transfor- PokW)
macao reversivel, equivalente a diferenca
das energias livres inicial e final. Quando
W = AF, a probabilidade de observar o < .

valor de trabalho W no processo direto € a —(Wg) AF (W) w

mesma que a de observar —WW no processo Figura 2: Distribuigées de probabilidade de WD €
Wh.
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reverso: nao ha como distinguir o filme de (D) do filme retroexecutado de (R), isto €, ndo h4 seta do
tempo — o processo € de fato reversivel.

Uma consequéncia direta do Teorema de Flutuacdo de Crooks € que mdquinas microscépicas
operam em sentido reverso durante uma quantidade razodvel de tempo, assim elas sdo capazes de
gerar trabalho a partir do calor do ambiente em que se encontram ao contrdrio do que se vé em
sistemas macroscOpicos onde calor sempre € dissipado. Em méquinas moleculares, o ambiente age
continuamente sobre elas mantendo-as fora do equilibrio de tal maneira que as flutuagdes geradas
sobre o sistema sdo relevantes porque a probabilidade de se observar desvios da Segunda Lei se torna
aparente nessas escalas de energia — poucos kg7 [13].

Antes de encerrarmos a discussao, cabe fazermos uma digressao sobre a irreversibilidade micros-
copica. Como vimos acima, ndo podemos usar o resultado central deste texto como uma explicacdo
para a irreversibilidade microscopica e um dos problemas da Mecanica Estatistica estd em como con-
ciliar a reversibilidade e determinismo da dindmica de sistemas microscopicos com a irreversibilidade
macroscépica observada no universo. Com a publicacdo do seu artigo sobre a teoria quantica de radi-
acdo [14], Einstein mostrou que a intera¢do quantica entre matéria e radiagcdo € assimétrica em relacao
ao tempo, introduzindo um indeterminismo intrinseco nas leis da fisica. Se essas interagdes sdo de
fato irreversiveis, as colisdes apagam a “memoria” das trajetérias passadas de particulas fazendo que
trajetdrias futuras (ou reversas) sejam indeterminadas, recuperando assim a irreversibilidade esperada
pela Segunda Lei da Termodindmica em sistemas microscopicos. Pode-se dizer, entdo, que a irre-
versibilidade ocorrente da interagdo matéria-radiacdo € o que dd origem ao principio do aumento de

entropia no universo [15].

5 Ilustracao da Igualdade de Jarzynski

Nesse exemplo consideramos um sistema

classico que obedece a dinamica hamilto-

niana e é compativel com todas as defini- WQ_WW ..... .

coes feitas nesse trabalho para a obtengao ;
— X —e 2+ L —x—>
da Eq. (1). Vamos analisar um sistema : i
« 2+ L >

composto por uma particula de massa m I .
0 1
presa a duas placas paralelas através de , ~ » )
Figura 3: Representacdo esquematica do sistema

duas molas idénticas de constante k. estudado nesta secdo.

Assumimos que os respectivos potenciais sao harmonicos, assim podemos escrever a hamiltoniana
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do sistema como
P2 maw?
2m 2

onde w? = % ¢ a frequéncia natural das molas e 2/, + L € a distancia entre as placas. Aqui L faz o

[(x —1o)* + (x — L — 1y)?] (40)

papel de parametro de trabalho e iremos determinar a variacdo da energia livre do sistema conforme
L ¢ variado. Considerando o sistema em equilibrio inicial a2 uma temperatura 7' e assumindo que a
particula se move em uma dimensao, podemos obter a energia livre de Helmholtz do sistema a partir

de sua func¢ao de particdo candnica dada na Eq. (18)

—mw?L?
_ 553;)@ il 1)
Fe T | (BT met (42)
- V2hw)  4kgT |

Agora, vamos permitir que a placa direita comece a se mover tal que o sistema saia do estado
inicial em L = L, e chegue ao estado final em L = L, assim podemos determinar a diferenca da

energia livre entre esses dois estados como sendo
mw?
4

Para verificar a igualdade de Jarzynski, vamos definir o protocolo de trabalho da seguinte forma:

AF = (L3 — L3]. (43)

em t = (0 a parede direita comega a se mover com velocidade uniforme V' de forma que L(t) =
(Lo + V't) até atingir a nova posi¢do de equilibrio em L = L;. A partir da hamiltoniana dada na Eq.

(40) obtemos a equagdo de movimento do sistema dada por

d*x ) )
o —2w*(z — lp + w* (Lo + V'1)). (44)
Resolvendo essa equacdo diferencial, obtemos a seguinte expressdo para a posi¢do da particula
L Vit
x(t) = Ap cos (\/iwt +6) + 1o+ 70 + 53 (45)

onde Ay e 0 sdo constantes definidas a partir da posi¢ao e do momento iniciais da particula. Podemos

escrever a energia do sistema entdo como

B(t) = gm0 +

Como visto na §3.1, podemos calcular o trabalho como sendo a diferenca entre as energias inicial

[(z(t) —lo)? + (x(t) — Lo — L(1))?] . (46)

e final do sistema. Fazendo as devidas substitui¢des para x(t) e x(t) na expressdo acima chegamos

no seguinte resultado para o valor do trabalho calculado em cada realizacdo do protocolo

|4 Lo mwV
w = ¢(t) — po—(1 — cos V2uwt) — | (zg —lp — — | ——rc—, 47
5(6) ~ oo | )= (o —to- ) 5o @)
onde x( e py sdo a posicdo e momento iniciais da particula e ¢(¢) é dada por
mw? V2
o(t) = 1 [L% — L3+ E“ — o8 \/ﬁwt)} (48)
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Aqui se faz importante notar que, por se tratar de um sistema com apenas uma particula, precisa-
mos realizar o protocolo de trabalho “infinitas” vezes para obtermos o valor médio de trabalho sobre
todas as realizagdes. Apesar de estarmos tratando de um sistema idealizado, experimentos feitos com
moléculas individuais em laboratdrios t€m sucesso examente por repetirem o mesmo protocolo (neste
caso trata-se da desnaturagcdo de proteinas) inimeras vezes para obter-se a média da distribuicdo de
trabalho [16].

Como ja mencionado neste texto, sabemos que tratamos a posi¢do e a velocidade iniciais da par-
ticula como sendo varidveis estocdsticas obedecendo a distribui¢do de probabilidade canodnica, assim
o trabalho necessario para mover a parede direita da posi¢do L até L; também € uma varidvel esto-
castica. Dessa forma, o trabalho (que depende da trajetdria percorrida, e esta por sua vez € totalmente
determinada pela posi¢do e velocidade iniciais) tem sua distribuicéo de probabilidade P(W) calcu-

lada a partir da média das posi¢des e velocidades iniciais da seguinte forma

PW) = {0 (W —w)) (49)
onde 0(z) = 5= [ e"*dq. Temos entdo
1 o0 ) )
PW) = o~ / dge’™ (e (50)
m —00

Desconsideramos a média de ™"V pois estamos assumindo que o valor médio da distribuicdo é o

mesmo para cada realiza¢do do protocolo. Vamos entdo calcular a média da distribui¢ao de w

) e—BH(zo,p0)
(e7'm) :/Te_zqwdpodxoa (51)

B
Z
nas condic¢des iniciais

. W 272 ; oo V
<€—zqw> — %eiﬁmw L0€—lll¢/_ dp(] exp [ gpo + Zq 2p0 (1 — COS \/_wtﬂ

> mw? mw?
X/ d$0€Xp|:—ﬁ 5 (ZL‘O—Z())Q—B 5 (ZL‘O—ZO—L())Q

+zq7\7;</_2jV (930 — 1y — —) sin \/_wt}

Esta média pode ser calculada exatamente pois todas as integrais sao gaussianas, assim obtemos

o resultado

(e7) = exp [—iq¢ —q —V(1 — cos V2wt )} (52)

45
Agora, substituimos esse resultado na Eq. (50) obtendo
1 —2B8(W — ¢)?
PW) = v Th exp {2(1 Cﬁo(s \/iwf))va. (53)
1—cosV2uwt)V2m -
NG [( 2 ) ]
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Se notarmos que a equacgdo acima se trata de uma distribui¢do de probabilidade gaussiana podemos

identificar ¢ como sendo o valor médio de W e o desvio padrao o como

b, (1 — cos ;/Ewt)VQm‘ (54)

Cabe notar aqui que a varidncia 0% tem um comportamento oscilatério, se anulando para tempos

multiplos de = f . Isso acontece devido a simplicidade do sistema ndo-interagente, porém em modelos
que levam interagdes em conta a varidncia é sempre positiva para ¢ > 0, e se torna uma funcio
monotdnica em modelos mais préximo de processos reais [17].

Com uma expressao definida para P(W), podemos verificar a igualdade de Jarzynski
() = / PV AW = 3577 -20), (55)
Substituindo ¢ e o pelas seus devidos valores, chegamos ao resultado desejado
<€fﬁW> — o ame? [£3-13] _ o—AF (56)
Também podemos verificar que a quantidade ¢ realmente se trata do valor médio de W

/ T W exp [—W} AW = o, (57)

vemos que o resultado € imediato por se tratar de uma integral gaussiana, como esperado.

(W) =

2mo

Nesse exemplo, fica claro de notar que em um processo isotérmico onde o sistema se encontra em
um estado de equilibrio inicial, o trabalho realizado depende da posi¢do inicial no espaco de fase do
sistema e € definido pela distribui¢do de probabilidade candnica, ou seja, W depende do microestado
inicial como mencionado na §2. Aqui o protocolo foi aplicado considerando uma velocidade cons-
tante, porém vimos na derivacdo da Eq. (1) que seu resultado independe do protocolo de trabalho
aplicado.

Também estd implicito na derivacido que durante a aplicacdo do protocolo o sistema estd desco-
nectado do reservatério térmico, assumimos o mesmo caso para a derivagcao do resultado central, Eq.
(1). Quando a parede direita chega em sua posicao final, o sistema se encontra em uma temperatura
diferente da inicial 7', e o sistema precisa ser reacoplado ao reservatorio para chegar a um novo estado
de equilibrio com a mesma temperatura inicial 7'. Aqui vale a mesma argumentacgdo feita na §2.

Podemos utilizar esse mesmo exemplo para verificar o teorema de flutuacao de Crooks, para isso
vamos pensar no processo inverso ao descrito acima como sendo a parede direita inicialmente na
posi¢do L = L;. Aplica-se o mesmo protocolo de trabalho, mas com velocidade uniforme —V/, pelo
mesmo periodo de tempo aplicado ao processo direto, tal que a posicao final da parede seja L = Lj.
Como a hamiltoniana é simétrica em relacdo ao tempo, temos a mesma solucdo para as equagoes

de Hamilton, apenas com a substitui¢do de Ly por L, e V por —V. Designando a expressao obtida
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anteriormente como Pp(1V) para o trabalho direto, teremos a mesma distribuicao de probabilidade

para o trabalho reverso onde o desvio padrido o continua 0 mesmo mas o valor médio é dado por

) 2 VQ
o = m:’ [Lg — L3+ 5 (1~ cos ﬁwt)} (58)
tal que
1 (W+¢)
Pr(=W) = - . 59
r( ) o exp [ 557 (59)
Temos entdo o resultado esperado
U
= = exp [B(W — AF)]. (60)

Pa(W) — <w+¢‘>2}

exp |:— 962

6 Confirmacao experimental

A primeira comprovacao experimental da Igualdade de Jarzynski foi feita por Jan Liphardt et al
[16] utilizando uma molécula de RNA que responde a ambos os protocolos reversivel (quando a des-
naturagdo ocorre devagar — 2 a 5 pN/s) e irreversivel (desnaturacdo rapida — 34 e 52 pN/s), submetida a
processos de desnaturagdo mecanica perto do equilibrio. O mecanismo biol6gico usado, assim como
o funcionamento das pingas dpticas, € descrito com detalhes na referéncia [18]. Vale ressaltar que no
contexto experimental os sistemas estdo submetidos a processos isotérmicos e isobdricos, logo faz-se
necessdrio alterar a varidvel que define a energia livre na Eq. 1 de AF para AG, a energia livre de
Gibbs [16].

Para processos que ocorrem muito longe do equilibrio, a aplicacdo experimental da Igualdade de
Jarzysnki € limitada por grandes flutuacdes estatisticas que surgem devido a sensibilidade do valor
médio exponencial para eventos raros (valores pequenos de 1/'). Além disso, o desvio espacial que
ocorre devido a natureza nanoscopica do experimento dificulta a extragdo de valores confidveis de
AG utilizando velocidades baixas. Esses efeitos de desvio espacial diminuem consideravelmente
para velocidades maiores, gerando dados experimentais mais confidveis, mas com o custo de que
apenas processos irreversiveis componham a estatistica [19].

Por isso, um método mais confidvel para se extrair o valor da energia livre de uma molécula é
utilizando o Teorema de Flutuacdo de Crooks. Nesse caso € aplicado um protocolo de trabalho para
desnaturar e, em seguida, enovelar o 4cido nucleico, criando-se um histograma dos trabalhos W, e
W, respectivamente, a partir do qual obtém-se as distruibui¢des de probabilidade definidas na Eq.
32. Para que o TFC seja aplicado nessa situagdo, € necessario que os processos de desdobramento e
dobramento sigam o mesmo protocolo A(t), ou seja, a velocidade de desnaturagdo deve ser igual a

velocidade de enovelamento.
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A Eq. 32 quantifica efeitos de histerese no processo de desdobramento (dobramento): valores de
trabalho maiores do que AG ocorrem mais frequentemente ao longo da trajetoria de desnaturacio
enquanto valores (absolutos) menores do que AG ocorrem ao longo da trajetéria de enovelamento.
Apesar da distribui¢do de trabalho depender do protocolo A(t) aplicado, a razdo entre essas pro-
babilidades depende apenas de AG. Assim, a energia livre pode ser inferida apds a obtencdo dos

histogramas W p e W, pois, como vimos na §4 as distribui¢des se cruzam quando W = AG.

7 Conclusao

O resultado central deste texto nos dd a diferenca de energia livre entre duas configuragdes de
equilibrio de um sistema classico em termos da distribui¢do de trabalho realizado na transformacao,
mostrando que ao incorporarmos as flutuacdes conseguimos extrair informacao sobre os estados de
equilibrio de um sistema a partir de processos irreversiveis. Também verificamos o aspecto estatistico
da Segunda Lei da Termodindmica notando que, ao observarmos valores de W menores do que AF’,
ndo se trata de uma violagdo mas sim de uma consequéncia da sua formula¢do estocdstica, fato que ja
havia sido notado e discutido desde o desenvolvimento da Termodinamica cléssica no século XIX.

A igualdade de Jarzynski assumiu extrema importancia em Fisica, Quimica e Biologia nos tltimos
anos por permitir o estudo de sistemas microscépicos fora do equilibrio, incluindo a construgdo e ca-
racteriza¢do de nanoequipamentos e a descri¢do de maquinas moleculares, com particular relevancia
na andlise de experimentos com moléculas individuais € no desenvolvimento de métodos numéri-
cos para estimativas de energia livre, uma drea ativa de pesquisa em termodinamica computacional
[13, 18].

Avancgos tedricos e experimentais representam passos para o desenvolvimento de uma formulacao
unificada da termodindmica de sistemas microscopicos, que serd capaz de relacionar quantidades ter-
modinamicas a processos que envolvem estados fora do equilibrio [1]. Assim, teoremas de flutuacdo
guardam grande potencial para pesquisas futuras, além de criar um solo fértil para a descoberta de

novos paradigmas fisicos.
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